Targeting of RhoA/ROCK signaling ameliorates progression of diabetic nephropathy independent of glucose control.
نویسندگان
چکیده
OBJECTIVE RhoA, a small GTPase protein, and its immediate downstream target, Rho kinase (ROCK), control a wide variety of signal transduction pathways. Recent studies have shown that fasudil, a selective ROCK inhibitor, may play a pivotal role in a number of pathological conditions, ranging from cardiovascular diseases to pulmonary hypertension and erectile dysfunction. Considerable evidence suggests that some of the beneficial effects of statins may also stem from their modulatory effects on RhoA/ROCK signaling. In the current study, we hypothesized that pharmacological blockade of the RhoA/ROCK pathway with either fasudil or simvastatin would ameliorate progression of diabetic nephropathy. RESEARCH DESIGN AND METHODS In two separate experiments, diabetic db/db mice received fasudil (10 mg x kg(-) x day(-) i.p.) or simvastatin (40 mg x kg(-) x day(-) p.o.) for 16 weeks. Untreated db/db and db/m mice served as controls. RESULTS The kidney cortices of untreated db/db mice displayed increased ROCK activity compared with db/m mice. The fasudil-treated mice exhibited a significant reduction in ROCK activity, albuminuria, glomerular collagen IV accumulation, and urinary collagen IV excretion compared with untreated db/db mice. Interestingly, blood glucose was unaffected by fasudil administration. Treatment with simvastatin significantly attenuated RhoA activation in the kidney cortices of db/db mice and resulted in a significant reduction of albuminuria and mesangial matrix expansion. CONCLUSIONS Based on these results, we propose that RhoA/ROCK blockade constitutes a novel approach to the treatment of diabetic nephropathy. Our data also suggest a critical role for RhoA/ROCK activation in the pathogenesis of diabetic nephropathy.
منابع مشابه
Rutin Prevents High Glucose-Induced Renal Glomerular Endothelial Hyperpermeability by Inhibiting the ROS/Rhoa/ROCK Signaling Pathway.
Diabetic nephropathy is a progressive kidney disease caused by damage to the capillaries in the glomeruli. Endothelial dysfunction is an early sign of diabetic cardiovascular disease and may contribute to progressive diabetic nephropathy. Hyperglycemia-induced endothelial hyperpermeability is crucial to diabetic nephropathy. Rutin has beneficial effects on diabetic nephropathy, but the exact me...
متن کاملAB156. Taurine ameliorates erectile function in streptozocin-induced type 1 diabetic rats via multiple signaling pathways
Objective: PDE5 inhibitors represent the first line therapy for treatment of ED. However, diabetic patients have poorer response compared with normal patients. The aim of this study was to determine whether taurine, a sulfurcontaining amino acid, affects diabetic erectile dysfunction. Methods: Type 1 diabetes mellitus was induced in male rats by streptozotocin (60 mg/kg, intraperitoneally). Aft...
متن کاملEffect of the Rho kinase inhibitor Y-27632 and fasudil on inflammation and fibrosis in human mesangial cells (HMCs) under high glucose via the Rho/ROCK signaling pathway
This study investigated the effect of the Rho kinase inhibitor Y-27632 and fasudil on the development of human mesangial cell (HMC) inflammation and fibrosis induced by high glucose and to clarify the contribution of the Rho/ROCK signaling pathway in the pathogenesis of diabetic kidney disease (DKD). High glucose (30 mmol/l) induced the Rho/ROCK signaling pathway. Western blotting was used to d...
متن کاملSnoN upregulation ameliorates renal fibrosis in diabetic nephropathy
Progressive reduction of SnoN is associated with gradual elevation of TGF-β1 during diabetic nephropathy progression, suggesting SnoN to be a possible mediator of TGF-β1 signaling, with potential therapeutic benefits against TGF- β1 -induced renal fibrosis. To characterize SnoN for its role in renal fibrosis, we assessed SnoN expression patterns in response to high glucose stress, and evaluated...
متن کاملThe RhoA/ROCK Pathway Ameliorates Adhesion and Inflammatory Infiltration Induced by AGEs in Glomerular Endothelial Cells
A recent study demonstrated that advanced glycation end products (AGEs) play a role in monocyte infiltration in mesangial areas in diabetic nephropathy. The Ras homolog gene family, member A Rho kinase (RhoA/ROCK) pathway plays a role in regulating cell migration. We hypothesized that the RhoA/ROCK pathway affects adhesion and inflammation in endothelial cells induced by AGEs. Rat glomerular en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 57 3 شماره
صفحات -
تاریخ انتشار 2008